Periodic analytic approximate solutions for the Mathieu equation
نویسندگان
چکیده
منابع مشابه
Periodic analytic approximate solutions for the Mathieu equation
We propose two methods to find analytic periodic approximations intended for differential equations of Hill type. Here, we apply these methods on the simplest case of the Mathieu equation. The former has been inspired in the harmonic balance method and designed to find, making use on a given algebraic function, analytic approximations for the critical values and their corresponding periodic sol...
متن کاملTransition Curves for the Quasi-Periodic Mathieu Equation
In this work we investigate an extension of Mathieu’s equation, the quasi-periodic (QP) Mathieu equation given by ψ̈ + [δ + (cos t+ cosωt)]ψ = 0 for small and irrational ω. Of interest is the generation of stability diagrams that identify the points or regions in the δ-ω parameter plane (for fixed ) for which all solutions of the QP Mathieu equation are bounded. Numerical integration is employed...
متن کاملAnalytic Approximate Solution for Falkner-Skan Equation
This paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. The obtained re...
متن کاملApproximate Solutions for the Couette Viscometry Equation
The recovery of flow curves for non-Newtonian fluids from Couette rheometry measurements involves the solution of a quite simple first kind Volterra integral equation with a discontinuous kernel for which the solution, as a summation of an infinite series, has been known since 1953. Various methods, including an Euler–Maclaurin sum formula, have been proposed for the estimation of the value of ...
متن کاملApproximate Analytic Solutions of Time-Fractional Hirota-Satsuma Coupled KdV Equation and Coupled MKdV Equation
and Applied Analysis 3 Theorem 5. If u(x, t) = f(x)g(t), function f(x) = xh(x), where λ > −1 and h(x) has the generalized Taylor series expansion h(x) = ∑∞ n=0 a n (x − x 0 ) αn, (i) β < λ + 1 and α arbitrary, or (ii) β ≥ λ+1, α arbitrary, and a n = 0 for n = 0, 1, . . . , m− 1, wherem − 1 < β ≤ m, then the generalized differential transform (8) becomes U α,β (k, h) = 1 Γ (αk + 1) Γ (βh + 1) [D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2015
ISSN: 0096-3003
DOI: 10.1016/j.amc.2015.09.018